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Abstract

An adaptive harmonic wavelet transform is developed by taking advantage of the flexibility of the
generalized harmonic wavelets. It first constructs a partition tree, which contains a great number of disjoint
partitions of the frequency axis of a signal with each corresponding to an orthogonal harmonic wavelet
basis. Then it searches the tree for the partition to represent the signal most sparsely. Since the
corresponding basis is adapted to the composition of the signal, the transform can well reveal its
characteristics. This is demonstrated with analysis examples of some simulated and vibration signals as well
as comparisons with the conventional orthogonal harmonic wavelet transforms and wavelet packet
transform.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The classical harmonic wavelet transform (HWT) was developed by Newland in 1993 [1].
Similar to the ordinary discrete wavelet transform [2,3], the classical HWT can also perform
multiresolution analysis of a signal. In addition, it has a fast algorithm based on FFT for
numerical implementation. A distinct advantage of harmonic wavelets is that they are disjoint in
frequency. This, though having a trade-off of a relatively poor time localization, is desirable in the
application situations where frequency analysis accuracy is of particular concern. In 1994,
Newland [4,5] extended the classical harmonic wavelets to the generalized harmonic wavelets,
which provide a great deal of freedom for signal representation yet retaining the advantages of the
classical harmonic wavelets. By appropriately choosing the level parameters of the wavelets,
Newland obtained the so-called musical wavelets which give a finer frequency resolution than the
classical harmonic wavelets. In more recent years, Newland has further exploited the principle of
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harmonic wavelets and applied the results to analysis of non-stationary sound and vibration
signals [6–9].

HWT has recently drawn a considerable attention in different areas including biomedical signal
processing [10–12], pattern recognition [13], dynamic modelling of non-linear partial differential
equations [14], etc. In particular, in sound and vibration analysis, HWT has been applied with
success by a number of researchers. Besides Newland as mentioned above, Chancey et al. [15], for
example, found that HWT is powerful in handling the vibration transients generated in rotating
machinery. In Ref. [16], Samuel et al. showed that the non-stationary metric defined in the domain
of harmonic wavelets is more reliable than some commonly used metrics such as kurtosis in the
fault detection of helicopter gearboxes. Bonel-Cerdan and Nikolajsen [17] and Chettri et al. [18]
described the advantages of HWT over spectrum analysis and discussed the usefulness of HWT in
machine vibration analysis. In a comparative study with short-time Fourier transform, Tang [19],
on the other hand, showed the limitation of HWT in handling exponentially time-decaying
signals, which may result from the time localization problem mentioned above.

Compared with the above studies, adaptive analysis using harmonic wavelets has received less
attention. In fact, the generalized harmonic wavelets can form a great number of orthogonal
bases, each of which is capable of representing a signal of finite energy completely. In other words,
using the generalized harmonic wavelets, one can represent a signal in many different ways. This
gives rise to the questions: what is and how can we choose the best way for a given signal? The
present research addresses this problem and develops a method of adaptive harmonic wavelet
transform (AHWT). We first introduce the concept of partition tree. It provides numerous choices
to partition the frequency axis of a signal and each of the partitions corresponds to an orthogonal
harmonic wavelet basis. Then we present an algorithm, which is an extension of the ‘‘best basis’’
algorithm used in wavelet packet transform [20], to search the tree for the partition and basis that
yield the sparsest representation of the signal. As will be seen later, the selected basis is well
adapted to the composition of the signal and can reveal its characteristics effectively.

The paper is organized as follows: In the next section, the theory of harmonic wavelets is
reviewed briefly. The method of AHWT is then presented in Section 3 with discussions on some
related issues. In Section 4, this method is applied to the analysis of some simulated signals and
vibration data collected from a gearbox. Comparisons with the conventional orthogonal
harmonic wavelet transforms and wavelet packet transform are also presented. Concluding
remarks are finally given in Section 5.

2. Harmonic wavelets

2.1. The principle

The basic idea behind HWT is to analyze a signal with a wavelet whose spectrum is confined
exactly to a frequency band [4]. Deriving from the Fourier transform

Wm;nðoÞ ¼

1

ðn � mÞ2p
; m2ppoon2p;

0 otherwise;

8<
: ð1Þ
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Newland obtained the following harmonic wavelet:

wm;nðtÞ ¼
expðin2ptÞ � expðim2ptÞ

i2pðn � mÞt
; ð2Þ

where m and n are the level parameters and 1=ðn � mÞ determines the scale of the wavelet. m
and n are real and positive but not necessarily integers. It can be seen that wm;nðtÞ is complex-
valued.

If we translate wm;nðtÞ by step k=ðn � mÞ; where k is an integer, then we obtain the following
translated harmonic wavelet:

wm;n;kðtÞ ¼
exp½in2pðt � k=ðn � mÞÞ� � exp½im2pðt � k=ðn � mÞÞ�

i2pðn � mÞðt � k=ðn � mÞÞ
: ð3Þ

The Fourier transform of wm;n;kðtÞ is given by

Wm;n;kðoÞ ¼

1

ðn � mÞ2p
exp �io

k

n � m

� �
; m2ppoon2p;

0 otherwise;

8><
>: ð4Þ

which has the same modulus as Wm;nðoÞ in Eq. (1).
Eq. (4) shows that Wm;n;kðoÞ is identically zero except in the frequency band from m2p to n2p

within which its modulus is constant. In addition, the Fourier transforms of the wavelets at
adjacent frequency bands do not overlap each other. These properties make harmonic wavelets
particularly useful when the accuracy of frequency analysis is of particular concern.

Eqs. (1) – (4) give the definition of the generalized harmonic wavelets. If the level parameters are
specified as m ¼ 2j and n ¼ 2jþ1; they will reduce to the classical form of harmonic wavelets. The
spectra of the classical harmonic wavelets are confined exactly to octave bands [1]. They are
therefore well suited for characterizing a signal composed of high-frequency components of short
duration plus low-frequency components of long duration but do not necessarily work well for
others. The generalized harmonic wavelets provide the possibility to overcome this shortcoming.

In Ref. [4], Newland showed that if the pairs m and n begin with a pair for which m ¼ 0 and
continue with touching but not overlapping pairs to positive infinity, then the wavelets generated
by Eqs. (3) and (4) and their complex conjugates provide a complete set of orthogonal basis
functions for expanding any arbitrary function of finite energy. As an example, Newland
proposed the so-called musical wavelets [4], which give a finer frequency resolution than the
classical harmonic wavelets.

In general, using the generalized harmonic wavelets, a signal f ðtÞ can be represented as follows:

f ðtÞ ¼
X
m;n

XN
k¼�N

fam;n;kwm;n;kðtÞ þ *am;n;k %wm;n;kðtÞg; ð5Þ

where %wm;n;kðtÞ is the complex conjugate of wm;n;kðtÞ; and the complex wavelet coefficients

am;n;k ¼ ðn � mÞ
Z

N

�N

f ðtÞ %wm;n;kðtÞ dt; ð6Þ
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and

*am;n;k ¼ ðn � mÞ
Z

N

�N

f ðtÞwm;n;kðtÞ dt: ð7Þ

For a real-valued signal, *am;n;k ¼ %am;n;k; the conjugate of am;n;k:

2.2. Discrete implementation

In discrete implementation of HWT, circular harmonic wavelets are used [1,4]. For the
harmonic wavelet in Eq. (3), the corresponding circular wavelet is defined as

wc
m;n;kðtÞ ¼

XN
j¼�N

wm;n;kðt � jÞ; ð8Þ

on a unit interval of t: Newland showed that

wc
m;n;kðtÞ ¼

1

n � m

Xn�1

q¼m

exp i2pq t �
k

n � m

� �	 

: ð9Þ

Differing from the previous subsection, m and n are integers here. The circular wavelets can
faithfully model any discrete signal of finite energy [4]. Fig. 1 shows the real and imaginary parts
of the circular harmonic wavelets at the selected levels and translations.

Eq. (9) shares many properties of discrete Fourier transform (DFT). This makes it possible to
take advantage of FFT to implement discrete HWT [4]. Fig. 2 shows the procedure of Newland’s
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Fig. 1. Waveforms of circular harmonic wavelets: real part (a) and imaginary part (b) of the wavelet with m ¼ 5; n ¼ 45

and k ¼ 20; real part (c) and imaginary part (d) of the wavelet with m ¼ 33; n ¼ 37 and k ¼ 2:
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algorithm. It first applies FFT to the input signal, which is considered to be periodic in time with
period 1. The decomposition coefficients of the wavelets in the frequency band m2p to n2p are
then obtained by applying IFFT to the FFT restricted to this band. If the level parameters are
specified as m ¼ 2j and n ¼ 2jþ1; then the algorithm implements the classical HWT of the signal.
Similar to spectral analysis, for a real-valued signal, the decomposition coefficient of a wavelet
above the Nyquist frequency is the complex conjugate of the decomposition coefficient of the
corresponding wavelet in the interval from 0 to the Nyquist frequency. It is therefore only needed
to consider the wavelets in this interval since those above the Nyquist frequency provide similar
information.

The above algorithm provides a way to compute the decomposition coefficients of wavelets
with predetermined level parameters. How to select the level parameters and hence the wavelets
however remains a problem. Currently, this is often done empirically, which as discussed later has
certain shortcomings. The proposed AHWT does the selection adaptively and overcomes the
shortcomings.

3. Adaptive harmonic wavelet transform

In this section, the method of AHWT is presented. We will focus on dealing with real-valued
discrete signals. The method however can be easily extended to the situation of complex-valued
signals.

3.1. Partition tree

Harmonic wavelets provide a great deal of freedom to represent a signal. Choosing different
sets of the level parameter pairs m and n in Eqs. (3) and (4) yields different representations.

Fig. 2. Algorithm to compute harmonic wavelet coefficients for wavelets in the selected frequency band m2ppoon2p
[6].

B. Liu / Journal of Sound and Vibration 262 (2003) 45–64 49



Determining the set of the level parameter pairs for the signal is equivalent to selecting a disjoint
partition of its frequency axis. In general, such a problem can be formulated as follows. Suppose
that we have a real-valued discrete signal f of length N defined on the unit time interval 0pto1:
Then according to Section 2.2, it is needed only to consider the DFT on the frequency sequence
O ¼ f0; 2p;y; k2p;y;Nf 2pg in decomposition of the signal, where Nf 2p is the Nyquist
frequency. Let fPlg

L�1
l¼0 be a disjoint partition of O; where LpNf þ 1 denotes the number of the

frequency bands that the partition produces. Then, the DFT of the signal in each band Pl ¼
fk2pgmlþ1�1

k¼ml
; with m0 ¼ 0 and mL ¼ Nf þ 1; corresponds to a set of translated harmonic wavelets

with an identical scale. The wavelets of all the frequency bands and their complex conjugates form
an orthogonal basis and can represent the signal completely. Our problem is therefore to find the
parameter set fL;m1;y;ml ;y;mL�1g so that the corresponding wavelets can best represent the
signal.

Finding the optimal solution to the above problem is generally not straightforward. We thus
restrict our search for the solution to certain types of partitions. Specifically, we will consider
those included in what we call a partition tree generated as follows. First, the frequency sequence
O mentioned above, which is associated with the root node of the tree, is partitioned uniformly
into a specified number of frequency bands. Each of these frequency bands corresponds to a node
and is then further uniformly partitioned to generate the next level of the tree. In the situation
where a frequency band is not divisible by the specified number, the partition can be roughly
uniform. This process is continued until a specified level or the partition in which each band
contains only one frequency is reached. It should be noted that the number of the frequency bands
produced from different parent nodes are not necessarily the same. Clearly, the leaves of any
connected subtree give a partition of O: According to Section 2, the corresponding harmonic
wavelets and their complex conjugates form an orthogonal basis and can represent any signal of
finite energy completely.

For the sake of convenience, we will use in the following the terminology ‘‘level 0’’ to denote the
root level, and ‘‘level j’’, all the nodes obtained by partition of the frequency bands at ‘‘level j –1’’.
This is different from Ref. [4] where ‘‘level m; n’’ is used when only one frequency band is
considered. We will also use ‘‘node m; j’’ to represent the mth node at level j; where m starts from 0
and increases as the frequency increases. In addition, we will use Lj to denote the number of nodes
at the jth level, and J; the level index of the bottom level.

A simple example of the partition tree is the binary tree illustrated in Fig. 3(a), where the root
node corresponds to the DFT of the signal on O while each of the other nodes corresponds to a
frequency band obtained by binary-splitting the frequency band associated with its parent node.
This example is similar to wavelet packets [20,21]. However, the harmonic wavelet decomposition
coefficients at different levels of the tree are all computed directly from the DFT of the signal
while in wavelet packets, the coefficients in a children node are computed sequentially from the
coefficients in its parent node. Figs. 3(b) and (c) give two more examples of the partition tree.

3.2. Selection of best partition

Given a partition tree, one has a huge number of disjoint partitions (e.g., more than 22J�1

for a
binary tree [21]) to represent a signal. To choose the one that best represents a signal, we need first
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a measure for evaluation of the quality of a representation, and second, an algorithm to search the
tree for the partition that optimizes the measure.

In time–frequency analysis including wavelet transforms, sparsity is often used to evaluate the
quality of a representation [21,22]. It means that the energy of the signal should be concentrated
on as few basis functions as possible. Obviously, if every basis function in a representation has
roughly the same decomposition coefficient, it is difficult to interpret the signal.

Among the various metrics of sparsity [20–22], we choose Shannon entropy as in Ref. [20] since
it is an additive quantity and involves relatively low computation cost. For a sequence x ¼ fxig;
the Shannon entropy is defined as

HðxÞ ¼ �
X

i

pi log pi; ð10Þ

where pi ¼ jxij
2=jjxjj2; and pi log pi is set as 0 if pi ¼ 0: It can be shown that HðxÞ is large if the

elements of the sequence are roughly the same while small if all but a few elements are negligible
[20,21,23].

To represent a signal with harmonic wavelets most sparsely, the partition selected from the
partition tree should yield the decomposition coefficients that minimize the Shannon entropy over

(a)

(b)

(c)

Fig. 3. Examples of partition tree: (a) a binary tree, (b) a ternary tree, and (c) a more complicated tree. The filled nodes

in each figure correspond to an orthogonal harmonic wavelet basis.
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the tree. We call such a partition the ‘‘best partition’’ and following Refs. [20,21], the basis formed
by the corresponding harmonic wavelets and their complex conjugates the ‘‘best basis’’.

Now we study how to search a partition tree for the best partition for a given signal and how to
represent the signal with the best basis. In Ref. [20], Coifman and Wickerhauser proposed an
algorithm to search the binary wavelet packet tree for the ‘‘best wavelet packet basis’’ to represent
a signal most sparsely. In the following, we extend this algorithm to deal with our problem.

Suppose that we have a real-valued discrete signal f of length N defined on the unit time
interval 0pto1: Then, selection of the best partition for f and representation of f using the
corresponding best basis can be done as follows.

Step 1. Compute the FFT of the signal.
Step 2. Build the partition tree with the root node corresponding to the frequency sequence

O ¼ f0; 2p;y; k2p;y;Nf 2pg ,where Nf 2p is the Nyquist frequency. Let Bm;j be the partition with
the original frequency band associated with node m; j being its only element, and Am;j; the best
partition of this frequency band, which is to be selected.

Step 3. Apply IFFT to the FFT restricted in the frequency band associated with each node to
obtain the decomposition coefficients of the corresponding harmonic wavelets.

Step 4. Compute the entropy of the decomposition coefficient sequence associated with each
node using Eq. (10) with pi ¼ jcij

2=jjf jj2; where ci are the decomposition coefficients. Denote by
HB

m;j and HA
m;j the entropy corresponding to Bm;j and Am;j; respectively.

Step 5. Set Am;J ¼ Bm;J and HA
m;J ¼ HB

m;J for m ¼ 0; 1, y, LJ�1:
Step 6. Determine the best partition Am;j for j ¼ J � 1; J � 2; :::; 0;m ¼ 0; 1; :::;Lj�1 as follows:
If HB

m;jp
P

nAGm;j
HA

n;jþ1;
then Am;j ¼ Bm;j and set HA

m;j ¼ HB
m;j;

else Am;j ¼ ,nAGm;j An;jþ1 and set HA
m;j ¼

P
nAGm;j

HA
n;jþ1 , where Gm;j denotes the index set of the

children nodes of node m; j:
Step 7. Represent the signal with the decomposition coefficients of the harmonic wavelets

corresponding to the selected partition and their complex conjugates.
Following Ref. [20], one can easily show that for a given signal, the above algorithm yields the

representation that has the minimum entropy over the prespecified partition tree. It is also clear
that the algorithm is not restricted to only the analysis of the full frequency extent of a signal. If
only a specific band is of concern, one can use the algorithm by building a partition tree (Step 2)
whose root node is associated with this band rather than the full frequency extent. This will yield
the sparsest representation for this frequency band. For example, vibration signals often contain
some harmonic components whose frequencies are known, e.g., the rotating frequency of a
machine. To deal with such components, harmonic basis functions are most suited. Therefore, in
analysis of such signals, one may first retain the FFT values at the corresponding frequencies to
represent the harmonic components, and then search for the sparsest representation using the
above method for each of the frequency bands separated by the harmonic components.

3.3. Discussion

Currently, selection of the level parameters of the generalized harmonic wavelets is often done
based on the a priori knowledge or by trial and error. For example, in vibration analysis, one may
first select a frequency band that covers the frequencies of certain well-understood vibration
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events. The level parameters m and n in Eqs. (3) and (4) are then specified as the values that
correspond to the lower and upper band limits. To reduce computation, this is often carried out
only for the frequency bands of interest rather than the whole frequency range of the signal. While
this approach works well sometimes, it has certain disadvantages in the general situation. First, in
many cases, it is difficult to determine accurately the frequency range of a vibration event, such as
the vibration excited by a localized gear defect. One may obtain some information with the help of
spectral analysis. Such information however is unreliable because of the inability of spectral
analysis in revealing the time characteristics of a signal. For example, a component that appears
very small in the spectrum may dominate locally in time. The frequencies of such a component
may be neglected if the analysis frequency band is determined based on spectral analysis. Second,
this approach uses a fixed set of basis functions to represent the signal components that have the
same frequency range but possibly different time–frequency compositions, and thus may not give
the best representation for signal interpretation. In fact, to represent a set of near-harmonic
components, wavelets of large scales are often desirable, while to represent transient components
with the same frequency range, wavelets of small scales are generally more suited.

The proposed method overcomes the shortcomings mentioned above. Instead of using a fixed
set of wavelets determined by the band limits, it selects different sets of wavelets adaptively to
match the composition of different signals. In the situation where only a specific frequency band is
of interest, one can either obtain the information from the AHWT for the full FFT spectrum or
use the algorithm by building a tree for this band as mentioned previously. Even for the later, the
proposed method does not require to estimate the frequency range of the analyzed vibration event
accurately since the representation depends mainly on the composition of the signal itself rather
than the band limits.

Compared with wavelet packet transform [20,21], the proposed AHWT provides more freedom
in representing a signal in the sense that the construction of the partition trees is more flexible.
This also provides a way to combine some prior knowledge about the characteristics of a signal
with the proposed adaptive procedure. For example, as mentioned in the previous subsection, one
may utilize the knowledge about the rotating frequencies of a machine to better represent a
vibration signal. Owing to the properties of harmonic wavelets, the proposed method has a better
capability in frequency analysis. This may be desirable in vibration analysis and some other
application areas. On the other hand, wavelet packet transform theoretically has a higher analysis
accuracy in time since the wavelets it uses has better time localization.

4. Applications

To demonstrate the performance of the proposed method, we present several application
examples in this section.

4.1. Simulated examples

The purpose of the first example is to demonstrate the time–frequency analysis ability of the
proposed AHWT and to investigate the influence of the choice of partition trees. We will compare
our method with wavelet packet transform [20,21] as it is one of the most important adaptive
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orthogonal transforms for time–frequency analysis and has been applied in various areas
including vibration analysis, e.g., Ref. [24]. The source codes used to implement wavelet packet
transform for this example and the vibration analysis example in the next subsection is WaveLab,
a wavelet analysis toolbox developed at Stanford University [25]. We consider a signal defined by

f ðtÞ ¼ sinð152ptÞ þ 0:8 sinð156ptÞ

þ 5 cos 0:56Np t �
229

N

� �� 
exp �

N

25
t �

229

N

� �� 2

p

( )

þ 4 cos 0:56Np t �
249

N

� �� 
exp �

N

25
t �

249

N

� �� 2

p

( )
; 0pto1;

where N ¼ 512 is the length of the signal. It consists of two harmonics and two modulated
Gaussians spaced closely in frequency and time, respectively. Fig. 4 shows its waveform and
Fourier transform, where A and B represent the two types of components in time, and A0 and B0;
their corresponding spectrum.

We first analyze the signal using a binary partition tree. As can be seen from the time–frequency
plane [21] in Fig. 5, the transform can well resolve the two modulated Gaussians as well as the two
harmonics. The signal is then analyzed with wavelet packet transform. Daubechies wavelet db10
(length 20) is used as the filter [3]. The result is shown in Fig. 6. Compared with Figs. 4 and 5, it
can be seen that wavelet packet transform has relatively low accuracy in frequency and cannot
properly resolve the modulated Gaussians. For the two harmonics, it not only has a low-
frequency resolution but also introduces considerable unexpected components, e.g., the one near
100pHz. This is due to the overlap in frequency between wavelets of different bands although
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Fig. 4. (a) A simulated signal composed of two harmonics and two modulated Gaussians spaced closely in frequency

and time, respectively, and (b) its Fourier transform.
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wavelet db10 is rather localized in frequency in comparison with those of a short length. We have
carried out more numerical experiments and found that the proposed method and wavelet packet
transform may each have its advantages in analyzing the characteristics of a signal in time but the
former usually works better in analyzing the characteristics in frequency. This can also been seen
from the vibration analysis example given later.
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Fig. 5. Time–frequency plane of the signal in Fig. 4(a) obtained using AHWT with a binary tree.
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Fig. 6. Time–frequency plane of the signal in Fig. 4(a) obtained using wavelet packet transform.
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Fig. 7 gives the analysis result obtained using a ternary partition tree. Compared with Fig. 5, it
provides more information about the modulated Gaussians in frequency but cannot discriminate
them in time. One can design a signal that yields a contrary result. This is because different trees
contain different sets of harmonic wavelets. If a tree contains the wavelets that can well match the
composition of a dominant signal component, it may have a high discrimination ability. Oth-
erwise, the transform needs to employ more wavelets to represent the component and thus may
result in a low analysis resolution. For the harmonics in the above signal, the ternary tree provides
the same result as the binary tree. It should be pointed out that to obtain the best frequency
resolution for harmonic components, it is generally required to partition the second maximum
level of a tree in such a way that each of the produced nodes in the maximum level contains only
one wavelet.

Based on the previous section, some trees may be included in some others. For example, a
quaternary tree is included in a binary tree. This inclusion however does not mean that the
quaternary tree is useless because the ‘‘simpler’’ partition it uses may sometimes produce a
time–frequency plane that is ‘‘cleaner’’ and easier to interpret. In addition, a quaternary tree
requires much less computation than a binary tree in decomposition of a signal. This is
desirable in real-time applications or in the situation where the length of the signal is very
large.

The second example is presented to demonstrate the feature detection ability of the proposed
method. The simulated signal is defined by

f ðtÞ ¼ sinð500ptÞ þ 0:8 cos 0:6Np t �
511

N

� �� X3

k¼0

skðtÞ þ 0:2nðtÞ; 0pto1;
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Fig. 7. Time–frequency plane of the signal in Fig. 4(a) obtained using AHWT with a ternary tree.
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where

skðtÞ ¼
exp �

N

16

ffiffiffi
p

p
t �

119þ 250k

N

� �� 
;

119þ 250k

N
pto1;

0; 0pto
119þ 250k

N
;

8>><
>>:

nðtÞ are standard normal variates, and N ¼ 1024; the length of the signal. It consists of a sinusoid,
four equally spaced one-sided modulated decaying exponentials and white noise. Similar
compositions are often seen in vibration signals generated in rotating machines, such as rolling
element bearings and gearboxes, with a local defect. In such a situation, the vibration at the
rotating frequencies usually has a harmonic nature while that generated due to the defect often
contains a sequence of transients. The purpose of the vibration analysis is often to detect the
transients which usually have very small energy at the early stage of the failure development
Figs. 8(a) and (b) show the waveform and Fourier transform of the simulated signal, respectively.
A zoomed-in plot of the signal segment from the time instant 0.040 to 0.195 is given in Fig. 8(c).
From the definition of the signal, we know that there is one modulated decaying exponential
starting at the instant 0.116 (=119/1024) but we can hardly identify it from either the waveform
or the spectrum. Fig. 9 shows the time–frequency plane obtained using the proposed algorithm
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and white noise, (b) its Fourier transform, and (c) zoomed-in plot of the signal segment from the instant 0.040 to 0.195.

B. Liu / Journal of Sound and Vibration 262 (2003) 45–64 57



with a binary tree. To properly observe both the sinusoid and the exponentials, logarithmic scale
is used in representing the squared moduli of the decomposition coefficients. One can see clearly
the sinusoid and the four modulated decaying exponentials as well as their time–frequency
characteristics.

4.2. Vibration analysis

Now we present an application example of the proposed method in vibration analysis. The
problem concerned in the example is gearbox failure detection. It is a typical topic of vibration
monitoring and has been investigated using various methods including wavelet transform, e.g.,
Ref. [26]. In this paper, we will not investigate the details of the problem itself but focus more on
illustration of the capability of the proposed method in vibration analysis. We will perform this by
comparison with several related existing methods. In this subsection, logarithmic scale is used in
representing the squared moduli of the decomposition coefficients in all the figures of time–
frequency plane.

The vibration data used in the study were collected from a life testing experiment conducted on
an automobile gearbox. The transmission gear train in the test was: Z28/Z48-Z20/Z44-Z30/
Z36-Z15/Z42. The rotation speed of the input shaft was 1600 r.p.m., i.e., 26.67Hz. A load of
880 kgm was applied to the output shaft. At the end of the test, one tooth on the driving gear
(Z15) of the last meshing pair was broken, which ran at 353.58 r.p.m., i.e., 5.89Hz. The vibration
signals were picked up at the bearing seat of the output shaft. They were lowpass-filtered at
1.8 kHz and then digitized with a sampling frequency of 4 kHz.

Fig. 10(a) shows a vibration signal picked up near the time when the tooth was broken, and
Fig. 10(b), its Fourier transform. It is difficult to obtain clear information about the failure from
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Fig. 9. Time–frequency plane of the signal in Fig. 8(a) obtained using AHWT with a binary tree.
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the time record and the spectrum. For comparison, a signal picked up after the tooth was broken
is given in Fig. 10(c), where there are regularly spaced impulses excited due to the breakage. Our
purpose of vibration analysis is to detect the symptom before the breakage happens. This is of
great importance in practice since tooth breakage in a gearbox may result in a catastrophic
accident.

Fig. 11 shows the time–frequency plane of the signal in Fig. 10(a) obtained using the proposed
method with a quarternary partition tree whose root node is associated with the whole band from
0 to the Nyquist frequency. One can see that in the frequency band from 125 to 250Hz, there exist
a sequence of regularly spaced dark patches. They have a short time duration but a relatively large
frequency band and represent impulsive components in the signal. More importantly, the average
time spacing between the neighbouring impulses is 0.166 s, corresponding to 6.02Hz in frequency,
which is very close to the rotation frequency of the damaged gear mentioned above. These
features provide a clear indication about the condition of this gear. Compared with the spectrum
in Fig. 10(b), the time–frequency plane also provides information about most of the harmonic
components in the signal. For instance, one can see some near-harmonic components at the
frequency of 88Hz, which is close to 88.39Hz, the meshing frequency of the last gear pair in the
transmission path. Accurate representation of harmonic components is usually desirable in
vibration analysis especially for vibration of rotating machinery.
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Figs. 12 and 13 show the analysis results of the classical HWT and the musical wavelet
transform. The former partitions the frequency axis into octave bands and the later further
partitions each band above 32Hz into 12 subbands to obtain a finer frequency resolution. In the
band from 125 to 250Hz, the classical HWT provides the same information as the proposed
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Fig. 11. Time–frequency plane of the signal in Fig. 10(a) obtained using AHWT with a quaternary tree.
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AHWT and indicates clearly the presence of the failure. However, the representation it gives
for other bands does not well reveal the characteristics of the signal. Owing to the octave
nature, the classical HWT is mainly suited to deal with signals composed of high-frequency
bursts plus low-frequency quasi-stationary components. As can be see from Fig. 13, the
musical wavelet transform does not work well for the analyzed signal; its time resolution
is too low to properly characterize the impulsive components in the above-mentioned band
and its frequency resolution is not high enough to well represent most of the harmonics
except for the meshing frequency of the last gear pair. We should point out that the partitions
used in these two transforms are special cases included in the partition trees defined in the
previous section.

Fig. 14 shows the result yielded by wavelet packet transform. Daubechies db8 (length 16) filter
is used, which was found to be relatively effective compared with some other Daubechies filters in
dealing with the given signal. As an adaptive approach, wavelet packet transform can effectively
detect the impulses. It however cannot properly characterize the harmonic components in the
signal. This again is due to the frequency overlap between wavelets of different bands. We have
also analyzed the signal with wavelet packet transform using Symmlets and Coiflets [3] and
obtained similar results. In comparison with Fig. 11, the proposed AHWT appears to be more
effective.

5. Conclusion

In this paper, we have proposed an adaptive harmonic wavelet transform by exploiting the
flexibility of the generalized harmonic wavelets. The basic idea behind this method is first to
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Fig. 13. Time–frequency plane of the signal in Fig. 10(a) obtained using musical wavelet transform.
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construct a partition tree that includes numerous choices to partition the frequency axis of a signal
and then to search the tree for the partition and hence the basis to represent the signal most
sparsely. This basis is adapted to the composition of the signal and can well reveal its
characteristics.

The proposed method was tested with analysis of simulated signals and vibration data of a
gearbox. The results show that it performs better than the classical harmonic wavelet transform
and musical wavelet transform, which use a fixed partition of the frequency axis and are suited
only for certain types of signals. The proposed method also overcomes the shortcoming of the
conventional approach of generalized harmonic wavelet transform that determines the level
parameters of harmonic wavelets either based on prior knowledge or by trial and error.
Compared with wavelet packet transform, the proposed method provides more freedom in
representing a signal in the sense that the construction of the partition tree can be more flexible.
The application examples also show that the proposed method works better than wavelet packet
transform in frequency analysis. This makes it more suitable for dealing with vibration signals.

Harmonic wavelets have a high-frequency analysis accuracy but a relatively poor time
localization. Although this drawback is not evident in our testing examples, it is needed to
improve the time localization for more general application situations of adaptive analysis.
Research on this topic is in progress.
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